Санитарные правила устанавливают гигиенические требования к показателям микроклимата рабочих мест производственных помещений с учетом интенсивности энерготрат работающих, времени выполнения работы, периодов года и содержат требования к методам измерения и контроля микроклиматических условий.
Показатели микроклимата должны обеспечивать сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма.
Показателями, характеризующими микроклимат в производственных помещениях, являются:
- температура воздуха;
- температура поверхностей;
- относительная влажность воздуха;
- скорость движения воздуха;
- интенсивность теплового облучения.
Оптимальные микроклиматические условия установлены по критериям оптимального теплового и функционального состояния человека. Они обеспечивают общее и локальное ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах. Оптимальные величины показателей микроклимата необходимо соблюдать на рабочих местах производственных помещений, на которых выполняются работы операторского типа, связанные с нервно-эмоциональным напряжением (в кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники и др.). Перечень других рабочих мест и видов работ, при которых должны обеспечиваться оптимальные величины микроклимата определяются Санитарными правилами по отдельным отраслям промышленности и другими документами, согласованными с органами Государственного санитарно-эпидемиологического надзора в установленном порядке.
Оптимальные параметры микроклимата на рабочих местах должны соответствовать величинам, приведенным в таблице 16, применительно к выполнению работ различных категорий в холодный и теплый периоды года.
Перепады температуры воздуха по высоте и по горизонтали, а также изменения температуры воздуха в течение смены при обеспечении оптимальных величин микроклимата на рабочих местах не должны превышать 2°С и выходить за пределы величин, указанных в таблице 16 для отдельных категорий работ.
Таблица 16
Оптимальные величины показателей микроклимата на рабочих местах производственных помещений
Период года Категория работ по уровню энергозатрат, Вт Температура воздуха, °С Температура поверхностей, °С Относительная влажность воздуха, % Скорость движения воздуха, м/с
Холодный Iа (до 139) 22-24 21-25 60-40 0,1
Iб (140-174) 21-23 20-24 60-40 0,1
IIа (175-232) 19-21 18-22 60-40 0,2
Iiб (233-290) 17-19 16-20 60-40 0,2
III (более 290) 16-18 15-19 60-40 0,3
Теплый Iа (до 139) 23-25 22-26 60-40 0,1
Iб (140-174) 22-24 21-25 60-40 0,1
Iiа (175-232) 20-22 19-23 60-40 0,2
Iiб (233-290) 19-21 18-22 60-40 0,2
III (более 290) 18-20 17-21 60-40 0,3
3.3.2. Промышленная освещенность
Помещения с постоянным пребыванием людей должны иметь, как правило, естественное освещение. Без естественного освещения допускается проектировать помещения, которые определены соответствующими главами СниП на проектирование зданий и сооружений, нормативными документами по строительному проектированию зданий и сооружений отдельных отраслей промышленности, утвержденными в установленном порядке, а также помещения, размещение которых разрешено в подвальных этажах зданий и сооружений.
Естественное освещение подразделяется на боковое, верхнее и комбинированное (верхнее и боковое).
Совмещенное освещение помещений производственных зданий следует предусматривать:
а) для производственных помещений, в которых выполняются работы I – III разрядов;
б) для производственных и других помещений в случаях, когда по условиям технологии, организации производства или климата в месте строительства требуются объемно-планировочные решения, которые не позволяют обеспечить нормированное значение КЕО (многоэтажные здания большой ширины, одноэтажные многопролетные здания с пролетами большой ширины и т.п.), а также в случаях, когда технико-экономическая целесообразность совмещенного освещения по сравнению с естественным подтверждена соответствующими расчетами;
в) в соответствии с нормативными документами по строительному проектированию зданий и сооружений отдельных отраслей промышленности, утвержденных в установленном порядке.
Общее (независимо от принятой системы освещения) искусственное освещение производственных помещений, предназначенных для постоянного пребывания людей, должно обеспечиваться разрядными источниками света.
Искусственное освещение подразделяется на рабочее, аварийное, охранное и дежурное. Аварийное освещение разделяется на освещение безопасности и эвакуационное. Для общего искусственного освещения помещений следует использовать, как правило, разрядные источники света, отдавая предпочтение при равной мощности источникам света с наибольшими световой отдачей и сроком службы.
Искусственное освещение может быть двух систем – общее освещение и комбинированное освещение.
Рабочее освещение следует предусматривать для всех помещений зданий, а также участков открытых пространств, предназначенных для работы, прохода людей и движения транспорта. Для помещений, имеющих зоны с разными условиями естественного освещения и различными режимами работы, необходимо раздельное управление освещением таких зон. При необходимости часть светильников рабочего или аварийного освещения может использоваться для дежурного освещения. Нормируемые характеристики освещения в помещениях и снаружи зданий могут обеспечиваться как светильниками рабочего освещения, так и совместным действием с ними светильников освещения безопасности и (или) эвакуационного освещения.
Для освещения помещений следует использовать, как правило, наиболее экономичные разрядные лампы. Использование ламп накаливания для общего освещения допускается только в случае невозможности или технико-экономической нецелесообразности использования разрядных ламп. Для местного освещения кроме разрядных источников света следует использовать лампы накаливания, в том числе галогенные.
Освещенность рабочей поверхности, создаваемая светильниками общего освещения в системе комбинированного, должна составлять не менее 10% нормируемой для комбинированного освещения при тех источниках света, которые применяются для местного освещения. При этом освещенность должна быть не менее 200 лк при разрядных лампах, не менее 75 лк при лампах накаливания. Создавать освещенность от общего освещения в системе комбинированного более 500 лк при разрядных лампах и более 150 лк при лампах накаливания допускается только при наличии обоснований. В помещениях без естественного света освещенность рабочей поверхности, создаваемая светильниками общего освещения в системе комбинированного, следует повышать на одну ступень.
3.3.3. Промышленный шум
Допустимые уровни звука на рабочих местах, общие требования к защите от шума определяются в соответствии с ГОСТ 12.1.003, ГОСТ 12.1.036, СниП II-12-77, СН 2.2.4/2.1.8.562-96.
Снижение шума, воздействующего на человека, должно осуществляться:
- техническими средствами борьбы с шумом (уменьшением шума машин в источнике, применением технологических процессов, при которых звуковое давление на рабочих местах не превышает допустимые уровни и др.);
- строительно-акустическими мероприятиями;
- организационными мероприятиями (выбором рационального режима труда и отдыха, сокращением времени нахождения в условиях повышенного шума и другими мероприятиями).
В производственных помещениях, в которых размещается оборудование, генерирующее шум, должны осуществляться мероприятия по защите работающих от его вредного воздействия:
- отделка помещений звукопоглощающими материалами;
- установка электродвигателей с применением звукопоглощающих кожухов;
- своевременное устранение неисправностей, увеличивающих шум при работе оборудования;
- постоянный контроль за креплением движущихся частей машин и механизмов, проверка состояния амортизационных прокладок, смазки и т.д.;
- своевременная профилактика и ремонт оборудования;
- эксплуатация оборудования в режимах, указанных в паспортах заводов-изготовителей;
- размещение рабочих мест, машин и механизмов таким образом, чтобы воздействие шума на работников было минимальным;
- применение акустических экранов и индивидуальных средств защиты работников;
- организация мест кратковременного отдыха работников в помещениях, оборудованных средствами звукоизоляции и звукопоглощения.
Используемые звукоизоляционные, звукопоглощающие и вибродемпфирующие материалы должны быть несгораемыми или трудносгораемыми.
Для снижения шума от вентиляционных, отопительных, холодильных установок, установок кондиционирования воздуха и механического оборудования необходимо:
- ограничивать окружные скорости вращения колес вентиляторов и скорость движения воздуха;
- снабжать системы шумоглушителями и звукоизолировать воздуховоды;
- предусматривать установку вентиляторов и электродвигателей на вибро- и звукопоглощающих основаниях;
- обеспечивать разрыв между фундаментами под оборудованием и стенами здания;
- осуществлять перенос электродвигателей, установленных открыто в рабочем помещении, в камеру со звукоизолирующими стенками;
- соединять входное и выходное отверстия кожуха вентилятора с воздуховодами с помощью гибких вставок;
- периодически осматривать и заменять подшипники вентилятора;
- устранять биение шкивов или соединительных муфт, клиноременных и плоскоременных передач;
- поддерживать устойчивую балансировку вращающихся узлов.
3.3.4. Промышленная вибрация
Предельно допустимый уровень (ПДУ) вибрации – это уровень фактора, который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ вибрации не исключает нарушение здоровья у сверхчувствительных лиц.
По способу передачи на человека различают:
- общую вибрацию, передающуюся через опорные поверхности на тело сидящего или стоящего человека;
- локальную вибрацию, передающуюся через руки человека.
Вибрация, передающаяся на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями рабочих столов, относится к локальной вибрации.
По источнику возникновения вибраций различают:
- локальную вибрацию, передающуюся человеку от ручного механизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием;
- локальную вибрацию, передающуюся человеку от ручного немеханизированного инструмента (без двигателей), например, рихтовочных молотков разных моделей и обрабатываемых деталей;
- общую вибрацию 1 категории – транспортную вибрацию, воздействующую на человека на рабочих местах самоходных и прицепных машин, транспортных средств при движении по местности, агрофонам и дорогам (в том числе при их строительстве). К источникам транспортной вибрации относят: тракторы сельскохозяйственные и промышленные, самоходные сельскохозяйственные машины (в том числе комбайны); автомобили грузовые (в том числе тягачи, скреперы, грейдеры, катки и т.д.); снегоочистители, самоходный горно-шахтный рельсовый транспорт;
- общую вибрацию 2 категории – транспортно-технологическую вибрацию, воздействующую на человека на рабочих местах машин, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок. К источникам транспортно-технологической вибрации относят: экскаваторы (в том числе роторные), краны промышленные и строительные, машины для загрузки (завалочные) мартеновских печей в металлургическом производстве; горные комбайны, шахтные погрузочные машины, самоходные бурильные каретки; путевые машины, бетоноукладчики, напольный производственный транспорт;
- общую вибрацию 3 категории – технологическую вибрацию, воздействующую на человека на рабочих местах стационарных машин или передающуюся на рабочие места, не имеющие источников вибрации. К источникам технологической вибрации относят: станки метало- и деревообрабатывающие, кузнечно-прессовое оборудование, литейные машины, электрические машины, стационарные электрические установки, насосные агрегаты и вентиляторы, оборудование для бурения скважин, буровые станки, машины для животноводства, очистки и сортировки зерна (в том числе сушилки), оборудование промышленности стройматериалов (кроме бетоноукладчиков), установки химической и нефтехимической промышленности и др.
Общую вибрацию категории 3 по месту действия подразделяют на следующие типы:
а) на постоянных рабочих местах производственных помещений предприятий;
б) на рабочих местах на складах, в столовых, бытовых, дежурных и других производственных помещений, где нет машин, генерирующих вибрацию;
в) на рабочих местах в помещениях заводоуправления, конструкторских бюро, лабораторий, учебных пунктов, вычислительных центров, здравпунктов, конторских помещениях, рабочих комнатах и других помещениях для работников умственного труда;
- общую вибрацию в жилых помещениях и общественных зданиях от внешних источников: городского рельсового транспорта (мелкого залегания и открытые линии метрополитена, трамвай, железнодорожный транспорт) и автотранспорта; промышленных предприятий и передвижных промышленных установок (при эксплуатации гидравлических и механических прессов, строгальных, вырубных и других металлообрабатывающих механизмов, поршневых компрессоров, бетономешалок, дробилок, строительных машин и др.);
- общую вибрацию в жилых помещениях и общественных зданиях от внутренних источников: инженерно-технического оборудования зданий и бытовых приборов (лифты, вентиляционные системы, насосные, пылесосы, холодильники, стиральные машины и т.п.), а также встроенных предприятий торговли (холодильное оборудование), предприятий коммунально-бытового обслуживания, котельных и т.д.
Гигиеническая оценка постоянной и непостоянной вибрации, воздействующей на человека, должна производиться следующими методами:
- частотным (спектральным) анализом нормируемого параметра;
- интегральной оценкой по частоте нормируемого параметра;
- интегральной оценкой с учетом времени вибрационного воздействия по эквивалентному (по энергии) уровню нормируемого параметра.
Нормируемый диапазон частот устанавливается:
- для локальной вибрации в виде октавных полос со среднегеометрическими частотами: 8; 16; 31,5; 63; 125; 250; 500; 1000 Гц;
- для общей вибрации в виде октавных или 1/3 октавных полосах со среднегеометрическими частотами: 0,8; 1; 1,25; 1,6; 2,0; 2,5; 3,15; 4,0; 5,0; 6,3; 8,0; 10,0; 12,5; 16,0; 20,0; 25,0; 31,5; 40,0; 50,0; 63,0; 80,0 Гц.
Предельно допустимые величины нормируемых параметров производственной локальной вибрации при длительности вибрационного воздействия 480 мин (8 ч) приведены в таблице 17.
Таблица 17
Предельно допустимые значения производственной локальной вибрации
*Предельно допустимые значения по осям
Среднегеометрические частоты октавных полос, Гц виброускорения виброскорости
м/с
дБ м/c•10
дБ
8 1,4 123 2,8 115
16 1,4 123 1,4 109
31,5 2,8 129 1,4 109
63 5,6 135 1,4 109
125 11,0 141 1,4 109
250 22,0 147 1,4 109
500 45,0 153 1,4 109
1000 89,0 159 1,4 109
Корректированные и эквивалентные корректированные значения и их уровни 2,0 126 2,0 112
* Работа в условиях воздействия вибрации с уровнями, превышающими настоящие санитарные нормы более чем на 12 дБ (в 4 раза) по интегральной оценке или в какой-либо октавной полосе, не допускается.
3.3.5. Запыленность производственного помещения
Производственные помещения, в которых происходит выделение пыли, должны иметь гладкую поверхность стен, потолков, полов и регулярно очищаться от пыли.
Уборка пыли в производственных помещениях и на рабочих местах должна производиться в сроки, определенные приказом по организации, с использованием систем централизованной пылеуборки или передвижных пылеуборочных машин, а также другими способами, при которых исключено вторичное пылеобразование.
В организации должен быть организован контроль за отложениями производственной пыли на кровлях зданий и сооружений и своевременным безопасным их удалением.
Параметры микроклимата в производственных помещениях должны соответствовать требованиям СанПиН 2.2.4.548.
Помещения, в которых проводятся работы с пылевидными материалами, а также рабочие места у машин для дробления, размола и просеивания этих материалов должны быть обеспечены аспирационными или вентиляционными системами (проветриванием).
Управление затворами, питателями и механизмами на установках для переработки извести, цемента, гипса и других пылевых материалов следует осуществлять с выносных пультов.
Полы в помещениях должны быть устойчивы к допускаемым в процессе производства работ механическим, тепловым или химическим воздействиям.
Воздушная среда производственных помещений, в которой содержат вредные вещества в виде пыли, оказывает непосредственное влияние на безопасность труда. Воздействие пыли на организм человека зависит от их токсичности и концентрации в воздухе рабочих мест производственных помещений, а также времени пребывания человека, в таких условиях.
Пыль – аэрозоль с твердыми частицами дисперсной фазы размером преимущественно 10-4 – 10-1 мм. Оказывает негативное воздействие на здоровье человека. В большом количестве пыль образуется при перегрузке и перевозке пылящих грузов (цемента, угля, песка, щебня и др.), выполнении сварочных работ и др.
Производственная пыль по своему происхождению бывает двух видов – органическая и неорганическая. К органической относят пыль растительную (древесную, зерновую, мучную, хлопковую), животную (шерстяную, волосяную) и искусственную органическую (резиновую, пластмассовую). Неорганическая пыль бывает минеральная (песок, асбест, стекловата) и металлическая (чугунная, медная, алюминиевая).
Характер воздействия пыли на организм человека зависит от ее химического состава, который определяет биологическую активность пыли. По этому признаку пыль подразделяют на пыль раздражающего действия и токсическую. К первой относится неорганическая и древесная пыль. Токсической является пыль хрома, мышьяка, свинца и некоторых других веществ. Попадая в организм человека, частицы такой пыли взаимодействуют с кровью и тканевой жидкостью, и в результате протекания химических реакций образуют ядовитые вещества.
Пыль, попадающая на слизистые оболочки глаз, вызывает их раздражение, конъюнктивит. Оседая на коже, пыль забивает кожные поры, препятствуя терморегуляции организма, и может привести к дерматитам, экземам. Некоторые виды токсической пыли (извести, соды, мышьяка, карбида кальция) при попадании на кожу вызывают химические раздражения и даже ожоги.
Мерами борьбы с производственной пылью являются: рационализация производственных процессов, организация общей и местной вентиляции, замена токсичных веществ нетоксичными, механизация и автоматизация процессов, влажная уборка помещений и др. кроме того, применяются средства индивидуальной защиты: респираторы, фильтрующие противогазы, защитные очки, специальная одежда из пыленепроницаемой ткани.
3.4. Работа предприятия в чрезвычайных ситуациях
3.4.1. Пожарная безопасность
В производственных зданиях должны быть предусмотрены конструктивные, объемно- планировочные и инженерно-технические решения, обеспечивающие в случае пожара:
- возможность эвакуации людей независимо от их возраста и физического состояния наружу на прилегающую к зданию территорию (далее - наружу) до наступления угрозы их жизни и здоровью вследствие воздействия опасных факторов пожара;
- возможность спасения людей;
- возможность доступа личного состава пожарных подразделений и подачи средств пожаротушения к очагу пожара, а также проведения мероприятий по спасению людей и материальных ценностей;
- нераспространение пожара на рядом расположенные здания, в том числе при обрушении горящего здания;
- ограничение прямого и косвенного материального ущерба, включая содержимое здания и само здание, при экономически обоснованном соотношении величины ущерба и расходов на противопожарные мероприятия, пожарную охрану и ее техническое оснащение.
Эвакуация представляет собой процесс организованного самостоятельного движения людей наружу из помещений, в которых имеется возможность воздействия на них опасных факторов пожара. Эвакуацией также следует считать несамостоятельное перемещение людей, относящихся к маломобильным группам населения, осуществляемое обслуживающим персоналом. Эвакуация осуществляется по путям эвакуации через эвакуационные выходы.
Спасение представляет собой вынужденное перемещение людей наружу при воздействии на них опасных факторов пожара или при возникновении непосредственной угрозы этого воздействия. Спасение осуществляется самостоятельно, с помощью пожарных подразделений или специально обученного персонала, в том числе с использованием спасательных средств, через эвакуационные и аварийные выходы.
Защита людей на путях эвакуации обеспечивается комплексом объемно- планировочных, эргономических, конструктивных, инженерно-технических и организационных мероприятий.
Эвакуационные пути в пределах помещения должны обеспечивать безопасную эвакуацию людей через эвакуационные выходы из данного помещения без учета применяемых в нем средств пожаротушения и противодымной защиты.
За пределами помещений защиту путей эвакуации следует предусматривать из условия обеспечения безопасной эвакуации людей с учетом функциональной пожарной опасности помещений, выходящих на эвакуационный путь, численности эвакуируемых, степени огнестойкости и класса конструктивной пожарной опасности здания, количества эвакуационных выходов с этажа и из здания в целом.
Пожарная опасность строительных материалов поверхностных слоев конструкций (отделок и облицовок) в помещениях и на путях эвакуации за пределами помещений должна ограничиваться в зависимости от функциональной пожарной опасности помещения и здания с учетом других мероприятий по защите путей эвакуации.
Предотвращение распространения пожара достигается мероприятиями, ограничивающими площадь, интенсивность и продолжительность горения. К ним относятся:
- конструктивные и объемно-планировочные решения, препятствующие распространению опасных факторов пожара по помещению, между помещениями, между группами помещений различной функциональной пожарной опасности, между этажами и секциями, между пожарными отсеками, а также между зданиями;
- ограничение пожарной опасности строительных материалов, используемых в поверхностных слоях конструкций здания, в том числе кровель, отделок и облицовок фасадов, помещений и путей эвакуации;
- снижение технологической взрывопожарной и пожарной опасности помещений и зданий;
- наличие первичных, в том числе автоматических и привозных средств пожаротушения;
- сигнализация и оповещение о пожаре.
Тушение возможного пожара и проведение спасательных работ обеспечиваются конструктивными, объемно-планировочными, инженерно- техническими и организационными мероприятиями.
3.4.2. Молниезащита
Воздействия молнии принято подразделять на две основные группы:
- первичные, вызванные прямым ударом молнии;
- вторичные, индуцированные близкими ее разрядами или занесенные в объект протяженными металлическими коммуникациями.
Опасность прямого удара и вторичных воздействий молнии для зданий и сооружений и находящихся в них людей или животных определяется, с одной стороны, параметрами разряда молнии, а с другой - технологическими и конструктивными характеристиками объекта (наличием вэрыво- или пожароопасных зон, огнестойкостью строительных конструкций, видом вводимых коммуникаций, их расположением внутри объекта и т. д.).
Прямой удар молнии вызывает следующие воздействия на объект: электрические, связанные с поражением людей или животных электрическим током и появлением перенапряжении на пораженных элементах. Перенапряжение пропорционально амплитуде и крутизне тока молнии, индуктивности конструкций и сопротивлению заземлителей, по которым ток молнии отводится в землю.
Даже при выполнении молниезащиты прямые удары молния с большими токами и крутизной могут привести к перенапряжениям в несколько мегавольт.
При отсутствии молниезащиты пути растекания тока молнии неконтролируемы и ее удар может создать опасность поражения током, опасные напряжения шага и прикосновения, перекрытия на другие объекты.
Выделяемая в канале молнии энергия определяется переносимым зарядом, длительностью вспышки и амплитудой тока молнии; и 95% случаев разрядов молнии эта энергия (в расчете на сопротивление 1 Ом) превышает 5,5 Дж, она на два-три порядка превышает минимальную энергию воспламенения большинства газо-, паро- и пылевоздушных смесей, используемых в промышленности.
Следовательно, в таких средах контакт с каналом молнии всегда создает опасность воспламенения (а в некоторых случаях взрыва), то же относится к случаям проплавления каналом молнии корпусов взрывоопасных наружных установок. При протекании тока молнии по тонким проводникам создается опасность их расплавления и разрыва.
Контакт с каналом молнии может вызвать резкое паро- или газообразование в некоторых материалах с последующим механическим разрушением, например, расщеплением древесины или образованием трещин в бетоне.
Вторичные проявления молнии связаны с действием на объект электромагнитного ноля близких разрядов. Обычно это поле рассматривают в виде двух составляющих: первая обусловлена перемещением зарядов в лидере и канале молнии, вторая - изменением тока молнии во времени. Эти составляющие иногда называют электростатической и электромагнитной индукцией.
Электростатическая индукция проявляется в виде перенапряжения, возникающего на металлических конструкциях объекта и зависящего от тока молнии, расстояния до места удара и сопротивления заземлителя. При отсутствии надлежащего заземлителя перенапряжение может достигать сотен киловольт и создавать опасность поражения людей и перекрытий между разными частями объекта.
Электромагнитная индукция связана с образованием в металлических контурах ЭДС, пропорциональной крутизне тока молнии и площади, охватываемой контуром. Протяженные коммуникации в современных производственных зданиях могут образовывать охватывающие большую площадь контуры, в которых возможно наведение ЭДС в несколько десятков киловольт. В местах сближения протяженных металлических конструкций, в разрывах незамкнутых контуров создается опасность перекрытий и искрений с возможным рассеянием энергии около десятых долей джоуля.
Еще одним видом опасного воздействия молнии является занос высокого потенциала по вводимым в объект коммуникациям (проводам воздушных линий электропередачи, кабелям, трубопроводам). Он представляет собой перенапряжение, возникающее на коммуникации при прямых и близких ударах молнии и распространяющееся в виде набегающей на объект волны. Опасность создается за счет возможных перекрытий с коммуникации на заземленные части объекта. Подземные коммуникации также представляют опасность, так как могут принять на себя часть растекающихся в земле токов молнии и занести их в объект.
Молниезащита представляет собой комплекс мероприятий, направленных на предотвращение прямого удара молнии в объект или на устранение опасных последствий, связанных с прямым ударом; к этому комплексу относятся также средства защиты, предохраняющие объект от вторичных воздействий молнии и заноса высокого потенциала.
Средством защиты от прямых ударов молнии служит молниеотвод - устройство, рассчитанное на непосредственный контакт с каналом молнии и отводящее ее ток в землю.
Молниеотводы разделяются на отдельно стоящие, обеспечивающие растекание тока молнии минуя объект, и установленные на самом объекте. При этом растекание тока происходит по контролируемым путям так, что обеспечивается низкая вероятность поражения людей (животных) , взрыва или пожара.
Установка отдельно стоящих молниеотводов исключает возможность термического воздействия на объект при поражении молниеотвода.
Молниеотвод состоит из следующих элементов: молниеприемника, опоры, токоотвода и заземлителя. Однако на практике они могут образовывать единую конструкцию, например металлическая мачта или ферма здания представляет собой молниеприемник, опору и токоотвод одновременно.
По типу молниеприемника молниеотводы разделяются на стержневые (вертикальные), тросовые (горизонтальные протяженные) и сетки, состоящие из продольных и поперечных горизонтальных электродов, соединенных в местах пересечений. Стержневые и тросовые молниеотводы могут быть как отдельно стоящие, так и установленные на объекте; молниеприемные сетки укладываются на неметаллическую кровлю защищаемых зданий и сооружений. Однако укладка сеток рациональна лишь на зданиях с горизонтальными крышами, где равновероятно поражение молнией любого их участка. При больших уклонах крыши наиболее вероятны удары молнии вблизи ее конька, и в этих случаях укладка сетки по всей поверхности кровли приведет к неоправданным затратам металла; более экономична установка стержневых или тросовых молниеприемников, в зону защиты которых входит весь объект.
По этой причине укладка молниеприемной сетки допускается на неметаллических кровлях с уклоном не более 1:8. Иногда укладка сетки поверх кровли неудобна из-за ее конструктивных элементов (например, волнистой поверхности покрытия). В этих случаях допускается укладывать сетку под утеплителем или гидроизоляцией, при условии что они выполнены из несгораемых или трудносгораемых материалов и их пробой при разряде молнии не приведет к загоранию кровли.
При выборе средств защиты от прямых ударов молнии, типов молниеотводов необходимо учитывать экономические соображения, технологические и конструктивные особенности объектов. Во всех возможных случаях близрасположенные высокие сооружения необходимо использовать как отдельно стоящие молниеотводы, а конструктивные элементы зданий н сооружений, например металлическую кровлю, фермы, металлические и железобетонные колонны и фундаменты, - как молниеприемники, токоотводы и заземлители. Защита от термических воздействий прямого удара молнии осуществляется путем надлежащего выбора сечений молниеприемников и токоотводов, толщины корпусов наружных установок, расплавление и проплавление которых не может произойти при указанных выше параметрах тока молнии, переносимого заряда и температуры в канале.
Защита от механических разрушений различных строительных конструкций при прямых ударах молнии осуществляется: бетона - армированием и обеспечением надежных контактов в местах соединения с арматурой; неметаллических выступающих частей и покрытий зданий - применением материалов, не содержащих влаги или газогенерирующих веществ.
Защита от перекрытий на защищаемый объект при поражении отдельно стоящих молниеотводов достигается надлежащим выбором, конструкций заземлителей и изоляционных расстояний между молниеотводом и объектом. Защита от перекрытий внутри здания при протекании по нему тока молнии обеспечивается надлежащим выбором количества токоотводов, проложенных к заземлителям кратчайшими путями.
Защита от напряжении прикосновения и шага обеспечивается путем прокладки токоотводов в малодоступных для людей местах и равномерного размещения заземлителей по территории объекта.
Защита от вто |