Основной задачей регулирования рисков является поддержание приемлемых соотношений прибыльности с показателями безопасности и ликвидности в процессе управления активами и пассивами банка, то есть минимизация банковских потерь.
Кредитная политика банка определяется, во-первых, общими, установками относительно операций с клиентурой, которые тщательно разрабатываются и фиксируются в меморандуме о кредитной политике, и, во-вторых, практическими действиями банковского персонала, интерпретирующего и воплощающего в жизнь эти установки. Следовательно, в конечном счете способность управлять риском зависит от компетентности руководства банка и уровня квалификации его рядового состава, занимающегося отбором конкретных кредитных проектов и выработкой условий кредитных соглашений.
Таким образом, в процессе управления кредитным риском коммерческого банка можно выделить несколько общих характерных этапов:
- разработка целей и задач кредитной политики банка
- создание административной структуры управления кредитным риском и системы принятия административных решений
- изучение финансового состояния заемщика
- изучение кредитной истории заемщика, его деловых связей
- разработка и подписание кредитного соглашения
- анализ рисков не возврата кредитов
- кредитный мониторинг заемщика и всего портфеля ссуд
- мероприятия по возврату просроченных и сомнительных ссуд и по реализации залогов.
Разработанные в настоящее время классификационные модели дают возможность группировать заемщиков: прогнозные модели позволяют дифференцировать их в зависимости от вероятности банкротства; рейтинговые - в зависимости от их категории, устанавливаемой с помощью группы рассчитываемых финансовых коэффициентов и присваиваемых им уровней значимости.
Рейтинговая оценка (общая сумма баллов) рассчитывается путем умножения значения показателя на его вес (коэффициент значимости) в интегральном показателе. В мировой практике при оценке кредитоспособности на основе системы финансовых коэффициентов применяются в основном следующие пять групп коэффициентов: ликвидности, оборачиваемости, финансового рычага, прибыльности, обслуживания долга.
Американский ученый Э. Рид предложил следующую систему показателей, определяющих различные характеристики кредитоспособности предприятия: ликвидности, оборачиваемости, привлечения средств, прибыльности. Эта система позволяет прогнозировать своевременность совершения будущих платежей, ликвидность и реальность оборотных активов, оценить общее финансовое состояние фирмы и ее устойчивость, а также возможность определить границы снижения объема прибыли, в которых осуществляется погашение части фиксированных платежей.
Другая группа ученых (Дж. Шим, Дж. Сигел, Б. Нидлз, Г. Андерсон, Д. Колдвел) предложила использовать группы показателей, характеризующих ликвидность, прибыльность, долгосрочную платежеспособность и показатели, основанные на рыночных критериях. В отличие от методики Э. Рида этот подход позволяет прогнозировать долгосрочную платежеспособность с учетом степени защищенности кредиторов от неуплаты процентов (коэффициента покрытия процента).
Модификацией рейтинговой оценки является кредитный скоринг - технический прием, предложенный в начале 40-х годов XX в. американским ученым Д. Дюраном для отбора заемщиков по потребительскому кредиту. Отличие кредитного скоринга заключается в том, что в формуле рейтинговой оценки вместо значения показателя используется его частная балльная оценка. Для каждого показателя определяется несколько интервалов значений, каждому интервалу приписывается определенное количество баллов или определяется класс. Если полученный заемщиком рейтинг ниже значения, заранее установленного сотрудниками банка, то такому заемщику будет отказано в кредите, а если соответствует нормативам, то кредитная заявка будет удовлетворена. Преимуществами рейтинговой модели являются простота (так как достаточно рассчитать финансовые коэффициенты и, приняв во внимание коэффициенты их значимости, определить класс заемщика), возможность расчета оптимальных значений по частным показателям, способность ранжирования организаций по результатам, комплексный подход к оценке кредитоспособности (так как используются показатели, отражающие различные стороны деятельности организации).
Прогнозные модели, получаемые с помощью статистических методов, используются для оценки качества потенциальных заемщиков. При множественном дискриминантном анализе (МДА) используется дискриминантная функция (Z), учитывающая некоторые параметры (коэффициенты регрессии) и факторы, характеризующие финансовое состояние заемщика (в том числе финансовые коэффициенты).
Наиболее известными моделями МДА являются модели Альтмана и Чессера, включающие следующие показатели: отношение собственных оборотных средств к сумме активов; отношение реинвестируемой прибыли к сумме активов; отношение рыночной стоимости акций к заемному капиталу; отношение объема продаж (выручки от реализации) к сумме активов; отношение брутто-прибыли (прибыли до вычета процентов и налогов) к сумме активов.
Организацию относят к определенному классу надежности на основе значений Z-индекса модели Альтмана. Пятифакторная модель Альтмана построена на основе анализа состояния 66 фирм и позволяет дать достаточно точный прогноз банкротства на два-три года вперед. В более поздних работах ученый изучил такие факторы, как капитализируемые обязательства по аренде, применил сглаживание данных для устранения случайных колебаний. Новая модель с высокой степенью точности предсказывает банкротство на два года вперед и с меньшей вероятностью (примерно 70%) - на пять лет вперед. Построение в российских условиях подобных моделей достаточно сложно из-за отсутствия статистических данных о банкротстве организаций, постоянного изменения нормативной базы в области банкротства и признания банкротства организации на основе данных, не поддающихся учету.
Модель Чессера позволяет прогнозировать невыполнение клиентом условий договора о кредите. Невыполнение подразумевает не только непогашение кредита, но и любые другие отклонения, делающие отношения между кредитором и заемщиком менее выгодными по сравнению с первоначальными условиями. Используемая линейная комбинация независимых переменных (Z) включает: отношение кассовой наличности и стоимости легко реализуемых ценных бумаг к сумме активов; отношение чистой суммы продаж (без учета НДС) к сумме кассовой наличности и стоимости легко реализуемых ценных бумаг; отношение брутто-дохода (прибыли до вычета процентов и налогов) к сумме активов; отношение совокупной задолженности к сумме активов; отношение основного капитала к величине чистых активов (или применяемого капитала, равного акционерному капиталу и долгосрочным кредитам); отношение оборотного капитала к нетто-продажам (чистой сумме продаж). Получаемый показатель может рассматриваться как оценка вероятности невыполнения условий кредитного договора. Чессер использовал данные ряда банков по 37 «удовлетворительным» и 37 «неудовлетворительным» кредитам и для расчета взял показатели балансов фирм-заемщиков за год до получения кредита. Подставив расчетные показатели модели в формулу вероятности нарушения условий договора, Чессер правильно определил три из каждых четырех исследуемых случаев.
Отечественные дискриминантные модели прогнозирования банкротства представлены двухфакторной моделью М.А. Федотовой и пяти-факторной моделью Р.С. Сайфулина, Г.Г. Кадыкова. Модель оценки вероятности банкротств Федотовой опирается на коэффициент текущей ликвидности (Xt) и долю заемных средств в валюте баланса (Х2).
В уравнении Сайфулина, Кадыкова используются следующие коэффициенты: коэффициент обеспеченности собственными средствами (нормативное значение Xj> 0,1); коэффициент текущей ликвидности (Х2> 2); интенсивность оборота авансируемого капитала, характеризующая объем реализованной продукции, приходящейся на 1 руб. средств, вложенных в деятельность организации (Х3 > 2,5); рентабельность продаж, рассчитываемая как отношение прибыли от продаж к выручке (для каждой отрасли индивидуальная); рентабельность собственного капитала (Xs> 0,2). При полном соответствии значений финансовых коэффициентов минимальным нормативным уровням Z = 1 финансовое состояние заемщика с рейтинговым числом менее 1 характеризуется как неудовлетворительное.
Помимо МДА-моделей прогнозирования вероятного банкротства заемщика могут использоваться и упрощенные модели, основанные на системе определенных показателей.
При классификации кредитов возможно использование модели CART (Classification and regression trees), что переводится как «классификационные и регрессионные деревья». Это непараметрическая модель, основные достоинства которой заключаются в возможности широкого применения, доступности для понимания и легкости вычислений, хотя при построении применяются сложные статистические методы. В «классификационном дереве» фирмы-заемщики расположены на определенной «ветви» в зависимости от значений выбранных финансовых коэффициентов; далее идет «разветвление» каждой из них в зависимости от следующих коэффициентов. Точность классификации при использовании данной модели - около 90%. Пример «классификационного дерева» представлен на рис. 1, где К{ - финансовый коэффициент; Р, - нормативное значение показателя; В - предполагаемый банкрот; S - предположительно устойчивое состояние.
Рисунок 1 – «Классификационное дерево» модели CART
В дополнение к выделенным И.В. Вишняковым моделям необходимо добавить методику, широко используемую в отечественной практике, - методику на основе анализа денежных потоков. Эта методика в отличие от подхода, основанного на финансовых коэффициентах, позволяет использовать не данные об остатках по статьям активов и пассивов, а коэффициенты, определяемые по данным об оборотах ликвидных активов, запасах и краткосрочных долговых обязательствах,посредством расчета чистого сальдо различных поступлений и расходов денежных средств за определенный период. Разница между притоком и оттоком средств показывает величину общего чистого денежного потока. Кратковременное превышение оттока над притоком говорит о дефиците денежных средств (более низком рейтинге клиента). Представим основные методы анализа кредитоспособности ссудозаемщика в виде таблицы 2.
Таблица 2 – Методы расчетов кредитоспособности заемщиков
метод расчет
Рейтинговая оценка рассчитывается путем умножения значения показателя на его вес (коэффициент значимости) в интегральном показателе.
кредитный скоринг Отличие кредитного скоринга заключается в том, что в формуле рейтинговой оценки вместо значения показателя используется его частная балльная оценка.
Прогнозные модели При множественном дискриминантном анализе (МДА) используется дискриминантная функция (Z), учитывающая некоторые параметры (коэффициенты регрессии) и факторы, характеризующие финансовое состояние заемщика (в том числе финансовые коэффициенты).
модели CART
Это непараметрическая модель, основные достоинства которой заключаются в возможности широкого применения, доступности для понимания и легкости вычислений, хотя при построении применяются сложные статистические методы.
Модели оценки кредитоспособности, основанные на методах комплексного анализа. В случае использования математических моделей не учитывается влияние «качественных» факторов при предоставлении банками кредитов. Эти модели лишь отчасти позволяют кредитным экспертам банка сделать вывод о возможности предоставления кредита.
Методике «CAMPARI»
заключается в поочередном выделении из кредитной заявки и прилагаемых финансовых документов наиболее существенных факторов, определяющих деятельность клиента, в их оценке и уточнении после личной встречи с клиентом
Таким образом, для решения проблем, возникающих в процессе информационного обеспечения анализа кредитоспособности заемщика, необходимо принятие комплексных мер как со стороны государства, так и со стороны хозяйствующего субъекта, направленных на улучшение уровня подготовки учетно-финансовых специалистов и специалистов, занимающихся разработкой бизнес-планов (технико-экономического обоснования); выпуск соответствующей научной и методической литературы по данной тематике; использование обширной базы данных по этому направлению, содержащейся в Интернете; принятие федерального закона о кредитных бюро; создание статистической базы данных о среднеотраслевых показателях, характеризующих финансово-хозяйственную деятельность организаций по отраслям экономики с учетом возможности использования этой базы для анализа кредитоспособности; изменение менталитета кредиторов и заемщиков для их восприятия друг друга не как объекта «наживы», а как важного партнера на средне- и долгосрочную перспективу.
|